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Preface 

Copyright You cannot distribute or copy this document without 

permission from the author. You cannot copy or link to this document 

directly from other sources, web pages, etc. You should always link to the 

proper web page where this document is located, typically 

http://www.halvorsen.blog  

In this MATLAB Course, you will learn basic MATLAB and how to use 

MATLAB in Control and Simulation applications. An introduction to 

Simulink and other Tools will also be given. 

MATLAB is a tool for technical computing, computation and visualization in 

an integrated environment. MATLAB is an abbreviation for MATrix 

LABoratory, so it is well suited for matrix manipulation and problem 

solving related to Linear Algebra, Modelling, Simulation and Control 

applications. 

This is a self-paced course based on this document and some short videos 

on the way. This document contains lots of examples and self-paced tasks 

that the users will go through and solve on their own. The user may go 

through the tasks in this document in their own pace and the instructor 

will be available for guidance throughout the course. 

The MATLAB Course consists of 3 parts: 

1. Introduction to MATLAB 

2. Modelling, Simulation and Control  

3. Simulink and Advanced Topics 

In Part 2 of the course, you will learn how to use MATLAB in Modelling, 

Control and Simulation. 

You must go through MATLAB Course – Part 1: Introduction to MATLAB 

before you start. 

The course consists of lots of Tasks you should solve while reading this 

course manual and watching the videos referred to in the text. 

http://www.halvorsen.blog/
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 Make sure to bring your headphones for the videos in this 

course. The course consists of several short videos that will give you an 

introduction to the different topics in the course. 

Prerequisites  

You should be familiar with undergraduate-level mathematics and have 

experience with basic computer operations. 

What is MATLAB? MATLAB is a tool for technical computing, computation 

and visualization in an integrated environment. MATLAB is an abbreviation 

for MATrix LABoratory, so it is well suited for matrix manipulation and 

problem solving related to Linear Algebra. 

MATLAB is developed by The MathWorks. MATLAB is a short-term for 

MATrix LABoratory. MATLAB is in use world-wide by researchers and 

universities. For more information, see www.mathworks.com 

For more information about MATLAB, etc., please visit 

http://www.halvorsen.blog  

Online MATLAB Resources: 

MATLAB: 

http://www.halvorsen.blog/documents/programming/matlab/  

 

MATLAB Basics:  

http://www.halvorsen.blog/documents/programming/matlab/matlab_basics.php   

 

Modelling, Simulation and Control with MATLAB: 

http://www.halvorsen.blog/documents/programming/matlab/matlab_mic.php   

http://www.mathworks.com/
http://www.halvorsen.blog/
http://www.halvorsen.blog/documents/programming/matlab/
http://www.halvorsen.blog/documents/programming/matlab/matlab_basics.php
http://www.halvorsen.blog/documents/programming/matlab/matlab_mic.php
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MATLAB Videos: 

http://www.halvorsen.blog/documents/video/matlab_basics_videos.php   

 

MATLAB for Students: 

http://www.halvorsen.blog/documents/teaching/courses/matlab.php  

 

On these web pages you find video solutions, complete step by step 

solutions, downloadable MATLAB code, additional resources, etc.  

http://www.halvorsen.blog/documents/video/matlab_basics_videos.php
http://www.halvorsen.blog/documents/teaching/courses/matlab.php
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1 Introduction 

Additional Resources, Videos, etc. are available from: 

http://www.halvorsen.blog/documents/programming/matlab 

 

Part 2: “Modelling, Simulation and Control” consists of the following 

topics: 

• Differential Equations and ODE Solvers 

• Discrete Systems 

• Numerical Techniques 

o Interpolation 

o Curve Fitting 

o Numerical Differentiation 

o Numerical Integration 

• Optimization 

• Control System Toolbox 

• Transfer functions 

• State-space models 

• Frequency Response 

  

http://www.halvorsen.blog/documents/programming/matlab
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2 Differential Equations 

and ODE Solvers 

MATLAB have lots of built-in functionality for solving differential equations. 

MATLAB includes functions that solve ordinary differential equations (ODE) 

of the form: 

𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0 

MATLAB can solve these equations numerically. 

Higher order differential equations must be reformulated into a system of 

first order differential equations. 

Note! Different notation is used: 

𝑑𝑦

𝑑𝑡
= 𝑦′ = 𝑦̇ 

This document will use these different notations interchangeably. 

Not all differential equations can be solved by the same technique, so 

MATLAB offers lots of different ODE solvers for solving differential 

equations, such as ode45, ode23, ode113, etc. 

Example: 

Given the following differential equation: 

𝑥̇ = 𝑎𝑥 

where 𝑎 = −
1

𝑇
 ,where 𝑇 is the time constant 

Note! 𝑥̇ =
𝑑𝑥

𝑑𝑡
 

The solution for the differential equation is found to be: 

𝑥(𝑡) = 𝑒𝑎𝑡𝑥0 

We shall plot the solution for this differential equation using MATLAB. 
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Set 𝑇 = 5  and the initial condition 𝑥(0) = 1. 

 

We will create a script in MATLAB (.m file) where we plot the solution 𝑥(𝑡) 

in the time interval 0 ≤ 𝑡 ≤ 25 

The Code is as follows: 

T = 5; 

a = -1/T; 

x0 = 1; 

t = [0:1:25] 

 

x = exp(a*t)*x0; 

 

plot(t,x); 

grid 

This gives the following Results: 

 

[End of Example] 

This works fine, but the problem is that we first have to find the solution 

to the differential equation – instead we can use one of the built-in solvers 

for Ordinary Differential Equations (ODE) in MATLAB. In the examples and 

tasks below we will learn how we can use these built-in ODE solvers. 

There are different functions, such as ode23 and ode45. 
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2.1 ODE Solvers in MATLAB 

All of the ODE solver functions (ode23, ode45, etc.) share a syntax that 

makes it easy to try any of the different numerical methods, if it is not 

apparent which is the most appropriate. To apply a different method to 

the same problem, simply change the ODE solver function name. The 

simplest syntax, common to all the solver functions, is: 

[t,y] = solver(odefun,tspan,y0,options,…) 

where “solver” is one of the ODE solver functions (ode23, ode45, etc.). 

Note! If you don’t specify the resulting array [t, y], the function create a 

plot of the result. 

‘odefun’ is the function handler, which is a “nickname” for your function 

that contains the differential equations. 

Example: 

Given the following differential equation: 

𝑥̇ = 𝑎𝑥 

where 𝑎 = −
1

𝑇
 ,where 𝑇 is the time constant 

We use 𝑇 = 5  and the initial condition 𝑥(0) = 1. 

We use the ode23 solver in MATLAB for solving the differential equation 

(“runmydiff.m”): 

tspan = [0 25]; 

x0 = 1; 

 

[t,x] = ode23(@mydiff,tspan,x0); 

plot(t,x) 

Where @mydiff is defined as a function like this (“mydiff.m”): 

function dx = mydiff(t,x)  

a = -1/5; 

dx = a*x; 

Note! You have to implement it in 2 different m. files, one m. file where 

you define the differential equation you are solving, and another .m file 

where you solve the equation using the ode23 solver.  
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This gives the same results as shown in the previous example above and 

MATLAB have solved the differential equation for us (numerically). 

 

 

 [End of Example] 

Task 1: Bacteria Population 

In this task we will simulate a simple model of a bacteria population in a 

jar. 

The model is as follows: 

birth rate=bx 

death rate = px2 

Then the total rate of change of bacteria population is: 

𝑥̇ = 𝑏𝑥 − 𝑝𝑥2  

Set b=1/hour and p=0.5 bacteria-hour 

Note! 𝑥̇ =
𝑑𝑥

𝑑𝑡
 

→ Simulate (i.e., create a plot) the number of bacteria in the jar after 1 

hour, assuming that initially there are 100 bacteria present. 

How many bacteria are present after 1 hour? 
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[End of Task] 

2.1.1 Passing Arguments to the function 

In a differential equation we have different parameters that we may want 

to change. 

Task 2: Passing Parameters to the model 

Given the following system: 

𝑥̇ = 𝑎𝑥 + 𝑏 

where 𝑎 = −
1

𝑇
 ,where 𝑇 is the time constant 

In this case we want to pass 𝑎 and 𝑏 as parameters, to make it easy to 

be able to change values for these parameters. 

We set initial condition 𝑥(0) = 1 and 𝑇 = 5. We can set 𝑏 = 1. 

The function for the differential equation is: 

function dx = mysimplediff(t,x,param) 

% My Simple Differential Equation 

  

a = param(1); 

b = param(2); 

  

dx = a*x+b; 

Then we solve and plot the equation using this code: 

tspan = [0 25]; 

x0 = 1; 

a = -1/5; 

b = 1; 

param = [a b]; 

  

[t,y] = ode45(@mysimplediff, tspan, x0,[], param); 

plot(t,y) 

By doing this, it is very easy to changes values for the parameters 𝑎 and 

𝑏 without changing the code for the differential equation. 
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Note! We need to use the 5. argument in the ODE solver function for this. 

The 4. argument is for special options and is normally set to “[]”, i.e., no 

options. 

The result from the simulation is: 

 

→ Write the code above 

Try also this techniqueon the following differential equation: 

𝑥̇ = 𝑏𝑥 − 𝑝𝑥2 

Set b=1/hour and p=0.5 bacteria-hour 

 

You should also read more about the different solvers (ode34, ode 45, 

etc.) that exists in the Help system in MATLAB 

[End of Task] 

Task 3: ODE Solvers 

Use the ode23 function to solve and plot the results of the following 

differential equation in the interval [𝑡0, 𝑡𝑓]: 

𝒘′ + (𝟏. 𝟐 + 𝒔𝒊𝒏𝟏𝟎𝒕)𝒘 = 𝟎,  𝑡0 = 0, 𝑡𝑓 = 5, 𝑤(𝑡0) = 1 
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Note! 𝑤′ =
𝑑𝑤

𝑑𝑡
 

[End of Task] 

2.1.2 Multiple 1. order Differential 

Equations 

In real life we typically have higher order differential equations, or we 

have a set of 1. order differential equations that describe a given system. 

How can we solve such equations in MATLAB? 

Example: 

Given the differential equations: 

𝑑𝑦

𝑑𝑡
= 𝑥 

𝑑𝑥

𝑑𝑡
= −𝑦 

In MATLAB you define a function for these differential equations: 

function  dy = mydiff(t,y) 

dy(1) = y(2); 

dy(2) = -y(1); 

  

dy = [dy(1); dy(2)]; 

Note! Since the numbers of equations is more than one, we need to use 

vectors!! 

 

Using the ode45 function gives the following code: 

[t,y] = ode45(@mydiff, [-1,1], [1,1]); 

  

plot(t,y) 

title('solution of dy/dt=x and dx/dt=-y') 

legend('y', 'x') 

The equations are solved in the time span [−1, 1] with initial values [1, 1]. 

This gives the following plot: 
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Note! To make it more clearly, we can rewrite the equations (setting 𝑥1 =

𝑥, 𝑥2 = 𝑦): 

𝑑𝑥1

𝑑𝑡
= −𝑥2 

𝑑𝑥2

𝑑𝑡
= 𝑥1 

Where we have the vector 𝑥 = [
𝑥1
𝑥2
] and 𝑥̇ = [

𝑥̇1
𝑥̇2
] 

or MATLAB “syntax”: 𝑑𝑥𝑑𝑡 = 𝑥̇ 

In MATLAB it is tempting to define these 2 differential equations like this: 

dxdt1 = -x2; 

dxdt2 = x1; 

But if we have more than one differential equation (in this case we 

have 2), we need to use vectors! 

So, it needs be like this: 

dxdt(1) = -x(2); 

dxdt(2) = x(1); 

The final code that implements the differential equations becomes 

(“mydiff.m”): 



10  Differential Equations and ODE 

Solvers  

MATLAB Course - Part II: Modelling, Simulation and Control 

function dxdt = mydiff(t,x)  

  

dxdt(1) = -x(2); 

dxdt(2) = x(1); 

  

dxdt = dxdt'; 

Note! The function mydiff must return a column vector, that’s why we 

need to transpose it. 

Then we use the ode solver to solve the differential equations 

(“run_mydiff.m”): 

tspan = [-1,1]; 

x0 = [1,1]; 

  

[t,x] = ode45(@mydiff, tspan, x0); 

  

plot (t,x) 

  

legend('x1', 'x2') 

The solution will be the same. 

[End of Example] 

2.1.3 Higher order differential equations 

Higher order differential equations must be reformulated into a system of 

first order differential equations. 

Example: 

Given the following "Mass-spring-damper" system: 
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Where t is the simulation time, F(t) is an external force applied to the 

system, c is the damping constant of the spring, k is the stiffness of the 

spring, m is a mass, and x(t) is the position of the mass.  

The goal is to view the position x(t) of the mass m with respect to time t. 

You can calculate the position by integrating the velocity of the mass. You 

can calculate the velocity by integrating the acceleration of the mass. If 

you know the force and mass, you can calculate this acceleration by using 

Newton's Second Law of Motion, given by the following equation: 

Force = Mass × Acceleration 

Therefore,  

Acceleration = Force / Mass 

 

We can describe the system using a 2. order differential equation: 

𝐹(𝑡) − 𝑐𝑥̇(𝑡) − 𝑘𝑥(𝑡) = 𝑚𝑥̈(𝑡) 

Where 𝑥̇ is the first derivative of the position, which equals the velocity of 

the mass. 𝑥̈ is the second derivative of the position, which equals the 

acceleration of the mass. 

We reformulate the differential equation so 𝑥̈ is alone on the left side. 

𝑥̈ = −
𝑘

𝑚
𝑥 −

𝑐

𝑚
𝑥̇ +

1

𝑚
𝐹 

Higher order differential equations must be reformulated into a system of 

first order differential equations. 

We set: 

𝑥1 = 𝑥 

𝑥2 = 𝑥̇ = 𝑥̇1 

This gives: 

𝑥̇1 = 𝑥2 

𝑥̇2 = 𝑥̈ 

Finally: 
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𝑥̇1 = 𝑥2 

𝑥̇2 = −
𝑘

𝑚
𝑥1 −

𝑐

𝑚
𝑥2 +

1

𝑚
𝐹 

 

Now we are ready to solve the system using MATLAB.  

Below we present the MATLAB code. 

First, we need to create a function for our differential equations 

(mass_spring_damper_diff.m): 

function dx = mass_spring_damper_diff(t,x)  

  

k = 1; 

m = 5; 

c = 1; 

F = 1; 

  

dx = zeros(2,1); %Initialization 

  

dx(1) = x(2); 

dx(2) = -(k/m)*x(1)-(c/m)*x(2)+(1/m)*F; 

Then, we can write a MATLAB script (simulate_mass_spring_damper.m) 

that is using this function as part of the built-in ode solver: 

clear 

clc 

  

tspan = [0 50]; 

x0 = [0;0]; 

  

[t,x] = ode23(@mass_spring_damper_diff,tspan,x0); 

plot(t,x) 

This gives the following plot: 
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In the plot we see both 𝑥1 and 𝑥2. If we only want to plot 𝑥1, we can do 

like this: 

plot(t,x(:,2)) 

Improved solution: 

For greater flexibility we want to be able to change the parameters k, m, 

c, and F without changing the function, only changing the script. A better 

approach would be to pass these parameters to the function instead. 

The updated function becomes: 

function dx = mass_spring_damper_diff2(t,x, param)  

  

k = param(1); 

m = param(2); 

c = param(3); 

F = param(4); 

  

dx = zeros(2,1); 

  

dx(1) = x(2); 

dx(2) = -(k/m)*x(1) - (c/m)*x(2) + (1/m)*F; 

The updated script becomes: 

clear 
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clc 

close all 

  

tspan = [0 50]; 

x0 = [0;0]; 

  

k = 1; 

m = 5; 

c = 1; 

F = 1; 

param = [k, m, c, F]; 

  

[t,x] = ode23(@mass_spring_damper_diff2,tspan,x0, [], param); 

plot(t,x) 

Then we can easily change the values k, m, c, and F. 

[End of Example] 

Task 4: 2. order differential equation 

Use the ode23/ode45 function to solve and plot the results of the following 

differential equation in the interval [𝑡0, 𝑡𝑓]: 

(𝟏 + 𝒕𝟐)𝒘̈ + 𝟐𝒕𝒘̇ + 𝟑𝒘 = 𝟐,  𝑡0 = 0, 𝑡𝑓 = 5, 𝑤(𝑡0) = 0, 𝑤̇(𝑡0) = 1 

Note! 𝑤̈ =
𝑑2𝑤

𝑑𝑡2
 

Note! Higher order differential equations must be reformulated into a 

system of first order differential equations. 

Tip 1: Reformulate the differential equation so 𝑤̈ is alone on the left side. 

Tip 2: Set: 

𝑤 = 𝑥1 

𝑤̇ = 𝑥2 

[End of Task] 

 

Example: 

Given the following differential equations: 
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𝑥̇1 = −0.9𝑥1 + 0.1𝑥2 + 1 

𝑥̇2 = −0.4𝑥2 + 0.8𝑥3 − 0.9 

𝑥̇3 = −0.7𝑥1 − 0.1𝑥3 

MATLAB: 

function dxdt = my3orderdiff(t,x)  

  

dxdt(1) = -0.9*x(1) + 0.1*x(2)  + 1; 

dxdt(2) = -0.4*x(2) + 0.8*x(3) - 0.9; 

dxdt(3) = -0.7*x(1) - 0.1*x(3); 

  

dxdt = dxdt'; 

and the Script for running the simulation: 

clear 

clc 

  

tspan = [0,30]; 

x0 = [0,0,0]; 

  

[t,x] = ode23(@my3orderdiff, tspan, x0); 

  

plot (t,x) 

  

legend('x1', 'x2', 'x3') 

[End of Example] 
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3 Discrete Systems 

MATLAB has built-in powerful features for simulation of continuous 

differential equations and dynamic systems. 

Sometimes we want to or need to discretize a continuous system and then 

simulate it in MATLAB. 

When dealing with computer simulation, we need to create a discrete 

version of our system. This means we need to make a discrete version of 

our continuous differential equations. Actually, the built-in ODE solvers in 

MATLAB use different discretization methods. Interpolation, Curve Fitting, 

etc. is also based on a set of discrete values (data points or 

measurements). The same with Numerical Differentiation and Numerical 

Integration, etc. 

Below we see a continuous signal vs the discrete signal for a given system 

with discrete time interval 𝑇𝑠 = 0.1𝑠. 

 

3.1 Discretization 

To discretize a continuous model there are lots of different methods to 

use. One of the simplest is Euler Forward method: 

𝑥̇ ≈
𝑥𝑘+1 − 𝑥𝑘

𝑇𝑠
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where 𝑇𝑠 is the sampling time. 

Lots of other discretization methods do exists, such as “Euler backward”, 

Zero Order Hold (ZOH), Tustin’s method, etc. 

As shown in a previous chapter, MATLAB have lots of built-in functions for 

solving differential equations numerically, but here we will create our own 

discrete model. 

 

Example: 

Given the following differential equation: 

𝑥̇ = −𝑎𝑥 + 𝑏𝑢 

Note! 

𝑥̇ is the same as 
𝑑𝑥

𝑑𝑡
 

Where: 

𝑥 - Process variable, e.g., Level, Pressure, Temperature, etc. 

𝑢 - Input variable, e.g., Control Signal from the Controller 

𝑎,  𝑏 - Constants 

We start with finding the discrete differential equation. 

We can use e.g., the Euler Approximation: 
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𝑥̇ ≈
𝑥𝑘+1 − 𝑥𝑘

𝑇𝑠
 

𝑇𝑠 - Sampling Interval 

Then we get: 

𝑥𝑘+1 − 𝑥𝑘

𝑇𝑠
= −𝑎𝑥𝑘 + 𝑏𝑢𝑘 

This gives the following discrete differential equation: 

𝑥𝑘+1 = (1 − 𝑇𝑠𝑎)𝑥𝑘 + 𝑇𝑠𝑏𝑢𝑘 

Now we are ready to simulate the system 

We set 𝑎 = 0.25,  𝑏 = 2 and 𝑢 = 1 (You can explore with other values on 

your own) 

The Code can be written as follows: 

% Simulation of discrete model 

clear, clc 

  

% Model Parameters 

a = 0.25;b = 2; 

  

% Simulation Parameters 

Ts = 0.1; %s 

Tstop = 30; %s 

uk = 1; % Step Response 

x(1) = 0; 

  

% Simulation 

for k=1:(Tstop/Ts) 

   x(k+1) = (1-a*Ts).*x(k) + Ts*b*uk; 

end 

  

% Plot the Simulation Results 

k=0:Ts:Tstop; 

plot(k,x) 

grid on 

This gives the following Results: 
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[End of Example] 

Task 5: Discrete Simulation 

Given the following differential equation: 

𝑥̇ = 𝑎𝑥 

where 𝑎 = −
1

𝑇
 , where 𝑇 is the time constant 

Note! 𝑥̇ =
𝑑𝑥

𝑑𝑡
 

Find the discrete differential equation and plot the solution for this system 

using MATLAB. 

Set 𝑇 = 5 and the initial condition 𝑥(0) = 1. 

Create a script in MATLAB (.m file) where we plot the solution 𝑥(𝑘). 

[End of Task] 

Task 6: Discrete Simulation – Bacteria Population 

In this task we will simulate a simple model of a bacteria population in a 

jar. 



20  Discrete Systems  

MATLAB Course - Part II: Modelling, Simulation and Control 

The model is as follows: 

birth rate = bx 

death rate = px2 

Then the total rate of change of bacteria population is: 

𝑥̇ = 𝑏𝑥 − 𝑝𝑥2  

Set b=1/hour and p=0.5 bacteria-hour 

 We will simulate the number of bacteria in the jar after 1 hour, assuming 

that initially there are 100 bacteria present. 

→ Find the discrete model using the Euler Forward method by hand and 

implement and simulate the system in MATLAB using a For Loop. 

[End of Task] 

Task 7: Simulation with 2 variables 

Given the following system 

𝑑𝑥1

𝑑𝑡
= −𝑥2 

𝑑𝑥2

𝑑𝑡
= 𝑥1 

Find the discrete system and simulate the discrete system in MATLAB. 

Solve the equations, e.g., in the time span [−1 1] with initial values [1,  1]. 

 

[End of Task] 

3.2 Code Optimization 

Example: 

When doing more advanced simulations, it is important that you spend 

time optimization your code. In the examples and tasks above the 

equations are quite simple, but when the equations become more 
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complicated, or your simulation time increases, code optimization 

becomes more important. 

In the code example below the following simple differential equation will 

be used: 

𝑥̇ = 𝑎𝑥 + 𝑏𝑢 

But we will increase the simulation time dramatically compared to the 

previous examples. 

MATLAB Code 1; 

clear, clc 

  

tic 

a=-10; b=0.5; 

x=0; u=1; 

  

dt=0.01; 

N=1000000000; 

  

X(1)=x; 

for i=1:N 

    X(i+1)=X(i)+dt*(a*X(i)+b*u); 

end 

toc 

MATLAB Code 2: 

clear, clc 

  

tic 

a=-10; b=0.5; 

x=0; u=1; 

  

dt=0.01; 

N=1000000000; 

  

X=zeros(N,1); 

for i=1:N 

    X(i+1)=X(i)+dt*(a*X(i)+b*u); 

end 

toc 

MATLAB Code 3: 

clear, clc 

  

tic 
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a=-10; b=0.5; 

x=0; u=1; 

  

dt=0.01; 

N=1000000000; 

  

X=zeros(N,1); 

for i=1:N 

    X(i)=x; 

    x=x+dt*(a*x+b*u); 

end 

toc 

Try the different code examples and note the execution time. Try with 

different values of N, etc. 

 [End of Example] 

Example: 

In the code example below the following simple differential equation will 

be used: 

𝑥̇ = −𝑎𝑥 + 𝑏𝑢 

MATLAB Code 1; 

% Simulation of discrete model  

clear, clc  

  

% Model Parameters  

a = 0.25;b = 2; 

  

% Simulation Parameters  

Ts = 0.01;  

Tstop = 10000000; 

x(1) = 0; 

N = Tstop/Ts; 

u = linspace(0,1,N); 

  

% Simulation  

tic 

for k=1:N  

    x(k+1) = (1-a*Ts).*x(k) + Ts*b*u(k);  

end 

toc 

  

% Plot the Simulation Results  

t=0:Ts:Tstop;  

plot(t,x)  
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grid on 

MATLAB Code 2: 

% Simulation of discrete model  

clear, clc  

  

% Model Parameters  

a = 0.25;b = 2;  

  

% Simulation Parameters  

Ts = 0.01;  

Tstop = 10000000; 

uk = 1;  

N = Tstop/Ts; 

u = linspace(0,1,N); 

  

%Preallocation 

x = zeros(N,1); 

  

% Simulation  

tic 

for k=1:N 

    x(k+1) = (1-a*Ts).*x(k) + Ts*b*u(k);  

end 

toc 

  

% Plot the Simulation Results  

t=0:Ts:Tstop;  

plot(t,x)  

grid on 

MATLAB Code 3: 

% Simulation of discrete model  

clear, clc  

  

% Model Parameters  

a = 0.25;b = 2;  

  

% Simulation Parameters  

Ts = 0.01;  

Tstop = 10000000; 

uk = 1;  

x = 0;  

X(1)=x; 

N = Tstop/Ts; 

u = rand(N,1); 

u = linespace(0,1,N); 

  

% Simulation  
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X = zeros(N,1); 

tic 

for k=1:N 

    x = (1-a*Ts)*x + Ts*b*u(k);  

    X(k+1)=x; 

end 

toc 

  

% Plot the Simulation Results  

t=0:Ts:Tstop; 

plot(t,X)  

grid on 

In general, it will be many ways to implement a given system in MATLAB, 

we can use built in ODE solvers, we can use different discretization 

methods, and we can optimize our code in other ways. 

There is not a “best way” that can be used for all kind of systems. It will 

be your responsibility to find the best solution for your system. That’s why 

it is important that you know about different ways to do things, so you 

can find the best solution in a given situation. 

[End of Example] 
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4 Numerical Techniques 

In the previous chapter we investigated how to solve differential equations 

numerically, in this chapter we will take a closer look at some other 

numerical techniques offered by MATLAB, such as interpolation, curve-

fitting, numerical differentiations and integrations.   

4.1 Interpolation 

Interpolation is used to estimate data points between two known points. 

The most common interpolation technique is Linear Interpolation. 

In MATLAB we can use the interp1 function. 

Example: 

Given the following data: 

x y 

0 15 

1 10 

2 9 

3 6 

4 2 

5 0 

We will find the interpolated value for 𝑥 = 3.5. 

The following MATLAB code will do this: 

x=0:5; 

y=[15, 10, 9, 6, 2, 0]; 

  

plot(x,y ,'-o') 

  

% Find interpolated value for x=3.5 

new_x=3.5; 

new_y = interp1(x,y,new_x) 

The answer is 4, from the plot below we see this is a good guess: 
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[End of Example] 

The default is linear interpolation, but there are other types available, 

such as: 

• linear 

• nearest 

• spline 

• cubic 

• etc. 

Type “help interp1” to read more about the different options. 

Example: 

In this example we will use a spline interpolation on the same data as in 

the example above. 

x=0:5; 

y=[15, 10, 9,6, 2, 0]; 

  

new_x=0:0.2:5; 

new_y=interp1(x,y,new_x, 'spline') 

  

plot(x,y, new_x, new_y, '-o') 
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The result is as we plot both the original point and the interpolated points 

in the same graph: 

 

We see this result in 2 different lines. 

[End of Example] 

Task 8: Interpolation 

Given the following data: 

Temperature, T [ oC] Energy, u [KJ/kg] 

100 2506.7 

150 2582.8 

200 2658.1 

250 2733.7 

300 2810.4 

400 2967.9 

500 3131.6 

Plot u versus T. Find the interpolated data and plot it in the same graph. 

Test out different interpolation types. Discuss the results. What kind of 

interpolation is best in this case? 

What is the interpolated value for u=2680.78 KJ/kg? 

[End of Task] 
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4.2 Curve Fitting 

In the previous section we found interpolated points, i.e., we found values 

between the measured points using the interpolation technique. It would 

be more convenient to model the data as mathematical function 𝑦 = 𝑓(𝑥). 

Then we could easily calculate any data we want based on this model. 

MATLAB has built-in curve fitting functions that allows us to create empiric 

data model. It is important to have in mind that these models are good 

only in the region we have collected data. 

Here are some of the functions available in MATLAB used for curve fitting: 

Function Description Example 

polyfit P = POLYFIT(X,Y,N) finds the coefficients of a 

polynomial P(X) of degree N that fits the data Y 
best in a least-squares sense. P is a    row vector 
of length N+1 containing the polynomial 

coefficients in descending powers, P(1)*X^N + 
P(2)*X^(N-1) +...+ P(N)*X + P(N+1). 

>>polyfit(x,y,1) 

polyval Evaluate polynomial. Y = POLYVAL(P,X) returns 

the value of a polynomial P evaluated at X. P is a 
vector of length N+1 whose elements are the 
coefficients of the polynomial in descending 

powers. Y = P(1)*X^N + P(2)*X^(N-1) + ... + 
P(N)*X + P(N+1) 

 

These techniques use a polynomial of degree N that fits the data Y best in 

a least-squares sense. 

A polynomial is expressed as: 

𝑝(𝑥) = 𝑝1𝑥
𝑛 + 𝑝2𝑥

𝑛−1 +⋯+ 𝑝𝑛𝑥 +  𝑝𝑛+1 

where 𝑝1 , 𝑝2 , 𝑝3 , …  are the coefficients of the polynomial. 

MATLAB represents polynomials as row arrays containing coefficients 

ordered by descending powers. 

4.2.1 Linear Regression 

Here we will create a linear model of our data on the form: 

𝑦 = 𝑎𝑥 + 𝑏 

This is a polynomial of 1. Order. 

Example: 
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Given the following data: 

x y 

0 15 

1 10 

2 9 

3 6 

4 2 

5 0 

We will find the model on the form: 

𝑦 = 𝑎𝑥 + 𝑏 

We will use the polyfit function in MATLAB. 

The following code will solve it: 

x=[0, 1, 2, 3, 4 ,5]; 

y=[15, 10, 9, 6, 2 ,0]; 

n=1; % 1.order polynomial 

p = polyfit(x,y,n) 

The answer is: 

ans = 

   -2.9143   14.2857 

This gives the following model: 

𝑦 = −2.9143𝑥 + 14.2857 

We can also plot the measured data and the model in the same plot: 

x=[0, 1, 2, 3, 4 ,5]; 

y=[15, 10, 9, 6, 2 ,0]; 

n=1; % 1.order polynomial 

p=polyfit(x,y,n); 

  

a=p(1); 

b=p(2); 

  

ymodel=a*x+b; 

  

plot(x,y,'o',x,ymodel) 

This gives the following plot: 
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We see this gives a good model based on the data available. 

[End of Example] 

Task 9: Linear Regression 

Given the following data: 

Temperature, T [ oC] Energy, u [KJ/kg] 

100 2506.7 

150 2582.8 

200 2658.1 

250 2733.7 

300 2810.4 

400 2967.9 

500 3131.6 

Plot u versus T.  

Find the linear regression model from the data 

𝑦 = 𝑎𝑥 + 𝑏 

Plot it in the same graph.  

[End of Task] 



31  Numerical Techniques  

MATLAB Course - Part II: Modelling, Simulation and Control 

4.2.2 Polynomial Regression 

In the previous section we used linear regression which is a 1. order 

polynomial. In this section we will study higher order polynomials. 

In polynomial regression we will find the following model: 

𝑦(𝑥) = 𝑎0𝑥
𝑛 + 𝑎1𝑥

𝑛−1 +⋯+ 𝑎𝑛−1𝑥 +  𝑎𝑛 

Example: 

Given the following data: 

x y 

0 15 

1 10 

2 9 

3 6 

4 2 

5 0 

We will found the model of the form: 

𝑦(𝑥) = 𝑎0𝑥
𝑛 + 𝑎1𝑥

𝑛−1 +⋯+ 𝑎𝑛−1𝑥 +  𝑎𝑛 

We will use the polyfit and polyval functions in MATLAB and compare the 

models using different orders of the polynomial. 

We will investigate models of 2. order, 3. order, 4. order and 5. order. We 

have only 6 data points, so a model with order higher than 5 will make no 

sense. 

We use a For loop to create models of 2, 3, 4 and 5. order. 

The code is as follows: 

x=[0, 1, 2, 3, 4 ,5]; 

y=[15, 10, 9, 6, 2 ,0]; 

  

for n=2:5 %From order 2 to 5 

    p=polyfit(x,y,n) 

  

    ymodel=polyval(p,x); 

  

    subplot(2,2,n-1) 

    plot(x,y,'o',x,ymodel) 

    title(sprintf('Model of order %d', n)); 

end 
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The polyfit gives the following polynomials: 

p = 

    0.0536   -3.1821   14.4643 

p = 

   -0.0648    0.5397   -4.0701   14.6587 

p = 

    0.1875   -1.9398    6.2986   -9.4272   14.9802 

p = 

   -0.0417    0.7083   -4.2083   10.2917  -11.7500   15.0000 

Using the values, we get the following models: 

𝑦2(𝑥) ≈ 0.05𝑥
2 − 3.2𝑥 + 14.5 

𝑦3(𝑥) ≈ −0.065𝑥
3 + 0.5𝑥2 − 4𝑥 + 14.7 

𝑦4(𝑥) ≈ 0.2𝑥
4 − 1.9𝑥3 + 6.3𝑥2 − 9.4𝑥 +  15 

𝑦5(𝑥) ≈ −0.04𝑥
5 + 0.7𝑥4 − 4.2𝑥3 + 10.3𝑥2 − 11.8𝑥 +  15 

This gives the following results: 

 

As expected, the higher order models match the data better and better.  

Note! The fifth order model matches exactly because there were 

only six data points available. 

[End of Example] 
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Task 10: Polynomial Regression 

Given the following data: 

x y 

10 23 

20 45 

30 60 

40 82 

50 111 

60 140 

70 167 

80 198 

90 200 

100 220 

→ Use the polyfit and polyval functions in MATLAB and compare the 

models using different orders of the polynomial. 

Use subplots and make sure to add titles, etc. 

[End of Task] 

Task 11: Model fitting 

Given the following data: 

Height, h[ft] Flow, f[ft^3/s] 

0 0 

1.7 2.6 

1.95 3.6 

2.60 4.03 

2.92 6.45 

4.04 11.22 

5.24 30.61 

→ Create a 1. (linear), 2. (quadratic) and 3.order (cubic) model. Which 

gives the best model? Plot the result in the same plot and compare them. 

Add xlabel, ylabel, title and a legend to the plot and use different line 

styles so the user can easily see the difference. 

[End of Task] 
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4.3 Numerical Differentiation 

The derivative of a function 𝑦 = 𝑓(𝑥) is a measure of how y changes with 

x.  

Assume the following: 

 

Then we have the following definition: 

 

MATLAB is a numerical language and do not perform symbolic 

mathematics (... well, that is not entirely true because there is Symbolic 

Toolbox available for MATLAB, but this Toolkit will not be used in this 

course). 

MATLAB offers functions for numerical differentiation, e.g.: 

Function Description Example 

diff Difference and approximate derivative. DIFF(X), 
for a vector X, is [X(2)-X(1)  X(3)-X(2) ... X(n)-
X(n-1)]. 

>> dydx_num=diff(y)./diff(x); 
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polyder Differentiate polynomial. POLYDER(P) returns the 

derivative of the polynomial whose coefficients are 
the elements of vector P. 

POLYDER(A,B) returns the derivative of 
polynomial A*B. 

>>p=[1,2,3]; 

>>polyder(p) 

A numerical approach to the derivative of a function 𝑦 = 𝑓(𝑥) is: 

𝑑𝑦

𝑑𝑥
=
∆𝑦

∆𝑥
=
𝑦2 − 𝑦1

𝑥2 − 𝑥1
 

This approximation of the derivative corresponds to the slope of each line 

segment used to connect each data point that exists. An example is shown 

below: 

 

Example: 

We will use Numerical Differentiation to find 
𝑑𝑦

𝑑𝑥
 on the following function: 

𝑦 = 𝑥2 

based on the data points (x=-2:2): 

x y 

-2 4 

-1 1 

0 0 

1 1 

2 4 
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First, we will plot the data points together with the real function 𝑦 = 𝑥2 

using the following code: 

x=-2:0.1:2; 

y=x.^2; 

plot(x,y) 

  

hold on 

  

x=-2:2; 

y=x.^2; 

plot(x,y, '-oc') 

This gives the following plot: 

 

Then we want to find the derivative 
𝑑𝑦

𝑑𝑥
 

We know that the exact solution is: 

𝑑𝑦

𝑑𝑥
= 2𝑥 

For the values given in the table we have: 
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We will use this to compare the results from the numerical differentiation 

with the exact solution (see above). 

The code is as follows: 

x=-2:2; 

y=x.^2; 

 

dydx_num=diff(y)./diff(x); 

dydx_exact=2*x; 

dydx=[[dydx_num, NaN]', dydx_exact'] 

This gives the following results (left column is from the numerical 

derivation, while the right column is from the exact derivation): 

dydx = 

    -3    -4 

    -1    -2 

     1     0 

     3     2 

   NaN     4 

Note! NaN is added to the vector with numerical differentiation in 

order to get the same length of the vectors. 

If we plot the derivatives (numerical and exact), we get: 
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If we increase the number of data points (x=-2:0.1:2) we get a better 

result: 

 

[End of Example] 

Task 12: Numerical Differentiation 

Given the following equation: 

𝑦 = 𝑥3 + 2𝑥2 − 𝑥 + 3 

Find 
𝑑𝑦

𝑑𝑥
 analytically (use “pen and paper”).  
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Define a vector x from -5 to +5 and use the diff function to approximate 

the derivative y with respect to x (
∆𝑦

∆𝑥
). 

Compare the data in a 2D array and/or plot both the exact value of 
𝑑𝑦

𝑑𝑥
 and 

the approximation in the same plot. 

Increase number of data point to see if there are any difference. 

Do the same for the following functions: 

𝑦 = sin (𝑥) 

𝑦 = 𝑥5 − 1 

[End of Task] 

4.3.1 Differentiation on Polynomials 

A polynomial is expressed as: 

𝑝(𝑥) = 𝑝1𝑥
𝑛 + 𝑝2𝑥

𝑛−1 +⋯+ 𝑝𝑛𝑥 +  𝑝𝑛+1 

where 𝑝1 , 𝑝2 , 𝑝3 , …  are the coefficients of the polynomial. 

The differentiation of the Polynomial will be: 

𝑝(𝑥)′ = 𝑝1𝑛𝑥
𝑛−1 + 𝑝2(𝑛 − 1)𝑥

𝑛−2 +⋯+ 𝑝𝑛 

Example 

Given the polynomial 

𝑝(𝑥) = 2 + 𝑥3 

We can rewrite the polynomial like this: 

𝑝(𝑥) = 1 ∙ 𝑥3 + 0 ∙ 𝑥2 + 0 ∙ 𝑥 + 2 

The polynomial is defined in MATLAB as: 

>> p=[1, 0, 0, 2] 

We know that: 𝑝′ = 3𝑥2 

The code is as follows 

>> p=[1, 0, 0, 2] 

p = 
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     1     0     0     2 

>> polyder(p) 

ans = 

     3     0     0 

Which is correct, because 

𝑝(𝑥)′ = 3 ∙ 𝑥2 + 0 ∙ 𝑥2 + 0 

with the coefficients: 

𝑝1 = 3, 𝑝2 = 0, 𝑝3 = 0  

And this is written as a vector [3 0 0] in MATLAB. 

[End of Example] 

Task 13: Differentiation on Polynomials 

Consider the following equation: 

𝑦 = 𝑥3 + 2𝑥2 − 𝑥 + 3 

Use Differentiation on the Polynomial to find 
𝑑𝑦

𝑑𝑥
 

[End of Task] 

Task 14: Differentiation on Polynomials 

Find the derivative for the product: 

(3𝑥2 + 6𝑥 + 9)(𝑥2 + 2𝑥) 

Use the polyder(a,b) function.  

Another approach is to use define is to first use the conv(a,b) function to 

find the total polynomial, and then use polyder(p) function. 

Try both methods, to see if you get the same answer. 

[End of Task] 

4.4 Numerical Integration 

The integral of a function 𝑓(𝑥) is denoted as: 
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∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 

An integral can be seen as the area under a curve. Given 𝑦 = 𝑓(𝑥) the 

approximation of the Area (A) under the curve can be found dividing the 

area up into rectangles and then summing the contribution from all the 

rectangles: 

𝐴 = ∑(𝑥𝑖+1 − 𝑥𝑖) ∙ (𝑦𝑖+1 + 𝑦𝑖)/2

𝑛−1

𝑖=1

 

This is known as the trapezoid rule. 

We approximate the integral by using n trapezoids formed by using 

straight line segments between the points (𝑥𝑖−1, 𝑦𝑖−1) and (𝑥𝑖, 𝑦𝑖) for 1 ≤ 𝑖 ≤

𝑛 as shown in the figure below: 

 

The area of a trapezoid is obtained by adding the area of a rectangle and 

a triangle: 

 

MATLAB offers functions for numerical integration, such as: 
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Function Description Example 

diff Difference and approximate derivative. DIFF(X), 

for a vector X, is [X(2)-X(1)  X(3)-X(2) ... X(n)-
X(n-1)]. 

>> dydx_num=diff(y)./diff(x); 

 

trapz Computes the approximate integral using the 
trapezoidal method 

>> I = trapz(x,y) 

 

quad Numerically evaluate integral, adaptive Simpson 
quadrature. 
Q = QUAD(FUN,A,B) tries to approximate the 

integral of calar-valued function FUN from A to B. 
FUN is a function handle. The function Y=FUN(X) 

should accept a vector argument X and return a 
vector result Y, the integrand evaluated at each 
element of X. Uses adaptive Simpson quadrature 

method 

>> 

 

quadl Same as quad, but uses adaptive Lobatto 
quadrature method 

>> 

polyint Integrate polynomial analytically.  POLYINT(P,K) 

returns a polynomial representing the integral of 
polynomial P, using a scalar constant of 

integration K. 

>> I = polyint(p) 

integral Numerically integrates function fun from xmin to 
xmax 

>> I = integral(fun,xmin,xmax) 

Numerical Integration and Differentiation (MathWorks): 

https://se.mathworks.com/help/matlab/numerical-integration-and-differentiation.html  

 

Example: 

Given the function: 

𝑦 = 𝑥2 

We know that the exact solution is: 

∫ 𝑥2𝑑𝑥 =
𝑎3

3

𝑎

0

 

The integral from 0 to 1 is: 

∫ 𝑥2𝑑𝑥 =
1

3

1

0

≈ 0.3333 

https://se.mathworks.com/help/matlab/numerical-integration-and-differentiation.html
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We will use the trapezoid rule and the diff function in MATLAB to solve the 

numerical integral of 𝑥2 from 0 to 1. 

The MATLAB code for this is: 

x=0:0.1:1; 

y=x.^2; 

  

avg_y = y(1:length(x)-1) + diff(y)/2; 

A = sum(diff(x).*avg_y) 

Note! 

The following two lines of code  

avg_y = y(1:length(x)-1) + diff(y)/2; 

A = sum(diff(x).*avg_y) 

Implements this formula, known as the trapezoid rule: 

𝐴 = ∑(𝑥𝑖+1 − 𝑥𝑖) ∙ (𝑦𝑖+1 + 𝑦𝑖)/2

𝑛−1

𝑖=1

 

The result from the approximation is: 

A = 

    0.3350 

If we use the functions quad we get: 

quad('x.^2', 0,1) 

ans = 



44  Numerical Techniques  

MATLAB Course - Part II: Modelling, Simulation and Control 

    0.3333 

 

If we use the functions quadl we get: 

quadl('x.^2', 0,1) 

ans = 

    0.3333 

 

We also try the built-in trapz function: 

A = trapz(x,y) 

A = 

    0.3350 

The trapz function integrates numeric data rather than functional 

expressions, so in general the expression does not need to be known to 

use trapz on a matrix/vectors of data. In cases where the functional 

expression is known, you can instead use integral, integral2, or integral3. 

[End of Example] 

Task 15: Numerical Integration 

Use diff, quad, quadl, trapz and integral on the following equation: 

𝑦 = 𝑥3 + 2𝑥2 − 𝑥 + 3 

Find the integral of y with respect to x, evaluated from -1 to 1 

Compare the different methods. 

The exact solution is: 

∫ (𝑥3 + 2𝑥2 − 𝑥 + 3)𝑑𝑥
𝑏

𝑎

= (
𝑥4

4
+
2𝑥3

3
−
𝑥2

2
+ 3𝑥)|

𝑎

𝑏

=
1

4
(𝑏4 − 𝑎4) +

2

3
(𝑏3 − 𝑎3) −

1

2
(𝑏2 − 𝑎2) + 3(𝑏 − 𝑎) 

Compare the result with the exact solution. 

 

Repeat the task for the following functions: 
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𝑦 = sin(𝑥) 

𝑦 = 𝑥5 − 1 

[End of Task] 

4.4.1 Integration on Polynomials 

A polynomial is expressed as: 

𝑝(𝑥) = 𝑝1𝑥
𝑛 + 𝑝2𝑥

𝑛−1 +⋯+ 𝑝𝑛𝑥 +  𝑝𝑛+1 

where 𝑝1 , 𝑝2 , 𝑝3 , …  are the coefficients of the polynomial. 

In MATLAB we can use the polyint function to perform integration on 

polynomials. This function works the same way as the polyder function 

which performs differentiation on polynomials. 

Task 16: Integration on Polynomials 

Consider the following equation: 

𝑦 = 𝑥3 + 2𝑥2 − 𝑥 + 3 

Find the integral of 𝑦 with respect to 𝑥 (∫𝑦𝑑𝑥) using MATLAB. 

[End of Task] 
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5 Optimization 

Optimization is important in control and simulation applications. 

Optimization is based on finding the minimum of a given criteria function. 

In MATLAB we can use the fminbnd and fminsearch functions. We will 

take a closer look of how to use these functions. 

Function Description Example 

fminbnd X = FMINBND(FUN,x1,x2) attempts to find a 
local minimizer X of the function FUN in the 

interval x1 < X < x2. FUN is a function handle.  
FUN accepts scalar input X and returns a scalar 
function value F evaluated at X. FUN can be 

specified using @. 
FMINBND is a single-variable bounded 

nonlinear function minimization. 

>> x = fminbnd(@cos,3,4) 

x = 

    3.1416 

 

fminsearch X = FMINSEARCH(FUN,X0) starts at X0 and 
attempts to find a local minimizer X of the 

function FUN. FUN is a function handle.  FUN 
accepts input X and returns a scalar function 
value F evaluated at X. X0 can be a scalar, 

vector or matrix. FUN can be specified using 
@. 
FMINSEARCH is a multidimensional 

unconstrained nonlinear function minimization. 

>> x = fminsearch(@sin,3) 

x = 

    4.7124 

 

Example: 

Given the following function: 

𝑓(𝑥) = 𝑥2 + 2𝑥 + 1 

We will use fminbnd to find the minimum of the function. 

We plot the function: 
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We write the following MATLAB Script: 

x = -5:1:5; 

f = mysimplefunc(x); 

plot(x, f) 

  

x_min = fminbnd(@mysimplefunc, -5, 5)  

where the function (mysimplefunc.m) is defined like this: 

function f = mysimplefunc(x) 

  

f = x.^2 + 2.*x + 1; 

This gives: 

x_min = 

    -1 

→ The minimum of the function is -1. This can also be shown from the 

plot. 

[End of Example] 

 

Note! If a function has more than one variable, we need to use the 

fminsearch function. 

Example: 
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Given the following function: 

𝑓(𝑥, 𝑦) = 2(𝑥 − 1)2 + 𝑥 − 2 + (𝑦 − 2)2 + 𝑦 

We will use fminsearch to find the minimum of the function. 

The MATLAB Code can be written like this: 

[x,fval] = fminsearch(@myfunc, [1;1])  

where the function is defined like this: 

function f = myfunc(x) 

  

f = 2*(x(1)-1).^2 + x(1) - 2 + (x(2)-2).^2 + x(2); 

Note! The unknowns x and y is defined as a vector, i.e., 𝑥1 = 𝑥(1) = 𝑥,   𝑥2 =

𝑥(2) = 𝑦. 

𝑥 = [
𝑥1
𝑥2
] 

If there is more than one variable, you must do it this way. 

This gives: 

x = 

    0.7500 

    1.5000 

fval = 

    0.6250 

→ The minimum is of the function is given by 𝑥 = 0.75 and 𝑦 = 1.5. 

We can also plot the function: 

clear,clc 

  

[x,y] = meshgrid(-2:0.1:2, -1:0.1:3); 

  

f = 2.*(x-1).^2 + x - 2 + (y-2).^2 + y; 

  

figure(1) 

surf(x,y,f) 

  

figure(2) 

mesh(x,y,f) 

  

figure(3) 

surfl(x,y,f) 

shading interp; 
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colormap(hot); 

For figure 3 we get: 

 

[End of Example] 

Task 17: Optimization 

Given the following function: 

𝑓(𝑥) = 𝑥3 − 4𝑥 

→ Plot the function 

→ Find the minimum for this function 

[End of Task] 

Task 18: Optimization - Rosenbrock's Banana Function 

Given the following function: 

𝑓(𝑥, 𝑦) = (1 − 𝑥)2 + 100(𝑦 − 𝑥2)2 

This function is known as Rosenbrock's banana function. 

The function looks like this: 
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The global minimum is inside a long, narrow, parabolic shaped flat valley. 

To find the valley is trivial. To converge to the global minimum, however, 

is difficult. But MATLAB will hopefully do the job for us. 

Let’s see if MATLAB can do the job for us. 

 

→ Plot the function 

→ Find the minimum for this function 

[End of Task] 
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6 Control System 

Toolbox 

There are available lots of additional toolboxes for MATLAB. Toolboxes are 

specialized collections of M-files built for solving particular classes of 

problems, e.g., 

• Control System Toolbox 

• Signal Processing Toolbox 

• Statistics Toolbox 

• System identification Toolbox 

• etc. 

 

Here we will take a closer look at the “Control System Toolbox”. 

Control System Toolbox builds on the foundations of MATLAB to provide 

functions designed for control engineering. Control System Toolbox is a 

collection of algorithms, written mostly as M-files, that implements 

common control system design, analysis, and modeling techniques. 
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Convenient graphical user interfaces (GUIs) simplify typical control 

engineering tasks. Control systems can be modeled as transfer functions, 

in zero-pole-gain or state-space form, allowing you to use both classical 

and modern control techniques. You can manipulate both continuous-time 

and discrete-time systems. Conversions between various model 

representations are provided. Time responses, frequency responses can 

be computed and graphed. Other functions allow pole placement, optimal 

control, and estimation. Finally, Control System Toolbox is open and 

extensible. You can create custom M-files to suit your particular 

application. 
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7 Transfer Functions 

It is assumed you are familiar with basic control theory and transfer 

functions, if not you may skip this chapter. 

7.1 Introduction 

Transfer functions are a model form based on the Laplace transform. 

Transfer functions are very useful in analysis and design of linear dynamic 

systems. 

A general transfer function is on the form: 

𝐻(𝑆) =
𝑦(𝑠)

𝑢(𝑠)
 

Where 𝑦 is the output and 𝑢 is the input. 

 

First order Transfer Function: 

A first order transfer function is given on the form: 

𝐻(𝑠) =
𝑦(𝑠)

𝑢(𝑠)
=

𝐾

𝑇𝑠 + 1
 

there 

𝐾 is the Gain 

𝑇 is the Time constant 

A 1.order transfer function with time-delay has the following characteristic 

step response: 
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A first order transfer function with time-delay has the following transfer 

function: 

𝐻(𝑠) =
𝑦(𝑠)

𝑢(𝑠)
=

𝐾

𝑇𝑠 + 1
𝑒−𝜏𝑠  

Where 𝜏 is the time-delay. 

A 1. order transfer function with time-delay has the following 

characteristic step response: 

 

MATLAB have several functions for creating and manipulation of transfer 

functions: 

Function Description Example 

tf Creates system model in transfer function form. 

You also can use this function to state-space 
models to transfer function form. 

>num=[1]; 

>den=[1, 1, 1]; 

>H = tf(num, den) 
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pole Returns the locations of the closed-loop poles of a 

system model. 

>num=[1] 

>den=[1,1] 

>H=tf(num,den) 

>pole(H) 

zero Find the zeros  

step Creates a step response plot of the system model. 
You also can use this function to return the step 
response of the model outputs. If the model is in 

state-space form, you also can use this function 
to return the step response of the model states. 

This function assumes the initial model states are 
zero. If you do not specify an output, this function 
creates a plot. 

>num=[1,1]; 

>den=[1,-1,3]; 

>H=tf(num,den); 

>t=[0:0.01:10]; 

>step(H,t); 

lsim Creates the linear simulation plot of a system 

model. This function calculates the output of a 
system model when a set of inputs excite the 

model, using discrete simulation. If you do not 
specify an output, this function creates a plot. 

>t = [0:0.1:10] 

>u = sin(0.1*pi*t)' 

>lsim(SysIn, u, t) 

conv Computes the convolution of two vectors or 

matrices. 

>C1 = [1, 2, 3]; 

>C2 = [3, 4]; 

>C = conv(C1, C2) 

series Connects two system models in series to produce 
a model SysSer with input and output connections 

you specify 

>Hseries = series(H1,H2) 

feedback Connects two system models together to produce 
a closed-loop model using negative or positive 

feedback connections 

>SysClosed = feedback(SysIn_1, 

SysIn_2) 

c2d Convert from continuous- to discrete-time models  

d2c Convert from discrete- to continuous-time models  

Before you start, you should use the Help system in MATLAB to read more 

about these functions. Type “help <functionname>” in the Command 

window. 

Task 19: Transfer function 

Use the tf function in MATLAB to define the transfer function above. Set 

𝐾 = 2 and 𝑇 = 3. 

Type “help tf” in the Command window to see how you use this function. 

Example: 

% Transfer function H=1/(s+1) 

num = [1]; 

den = [1, 1]; 

H = tf(num, den) 

[End of Task] 
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7.2 Second order Transfer 

Function 

A second order transfer function is given on the form: 

𝐻(𝑠) =
𝐾

(
𝑠
𝜔0
)
2
+ 2𝜁

𝑠
𝜔0
+ 1

 

Where 

𝐾 is the gain 

𝜁 zeta is the relative damping factor 

𝜔0[rad/s] is the undamped resonance frequency. 

Task 20: 2.order Transfer function 

Define the transfer function using the tf function.  

Set 𝐾 = 1,𝜔0 = 1 

→ Plot the step response (use the step function in MATLAB) for different 

values of 𝜁. Select 𝜁 as follows: 

𝜁 > 1 

𝜁 = 1 

0 < 𝜁 < 1 

𝜁 = 0 

𝜁 < 0 

Tip! From control theory we have the following: 
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Figure: F. Haugen, Advanced Dynamics and Control - TechTeach, 2010. 

So, you should get similar step responses as shown above.  

[End of Task] 

Task 21: Time Response 

Given the following system: 

𝐻(𝑠) =
𝑠 + 1

𝑠2 − 𝑠 + 3
 

Plot the time response for the transfer function using the step function. 

Let the time-interval be from 0 to 10 seconds, e.g., define the time vector 

like this: 

 t=[0:0.01:10] 

and then use the function step(H,t). 

[End of Task] 
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7.3 Analysis of Standard 

Functions 

Here we will take a closer look at the following standard functions: 

• Integrator 

• 1. Order system 

• 2. Order system 

Task 22: Integrator 

The transfer function for an Integrator is as follows: 

𝐻(𝑠) =
𝐾

𝑠
 

→Find the pole(s) 

→ Plot the Step response: Use different values for 𝐾, e.g., 𝐾 = 0.2, 1, 5. Use 

the step function in MATLAB. 

[End of Task] 

Task 23: 1. order system 

The transfer function for a 1. order system is as follows: 

𝐻(𝑠) =
𝐾

𝑇𝑠 + 1
 

→ Find the pole(s) 

→ Plot the Step response. Use the step function in MATLAB. 

• Step response 1: Use different values for 𝐾, e.g., 𝐾 = 0.5, 1, 2. Set 

𝑇 = 1 

• Step response 2: Use different values for 𝑇, e.g., 𝑇 = 0.2, 0.5, 1, 2, 4. 

Set 𝐾 = 1 

[End of Task] 
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Task 24: 2. order system 

The transfer function for a 2. order system is as follows: 

𝐻(𝑠) =
𝐾𝜔0

2

𝑠2 + 2𝜁𝜔0𝑠 + 𝜔0
2
=

𝐾

(
𝑠
𝜔0
)
2
+ 2𝜁

𝑠
𝜔0
+ 1

 

Where 

• 𝐾 is the gain 

• 𝜁 zeta is the relative damping factor 

• 𝜔0[rad/s] is the undamped resonance frequency. 

 

→ Find the pole(s) 

→ Plot the Step response: Use different values for 𝜁, e.g., 𝜁 = 0.2, 1, 2. Set 

𝜔0 = 1 and K=1. Use the step function in MATLAB. 

Tip! From control theory we have the following: 
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Figure: F. Haugen, Advanced Dynamics and Control - TechTeach, 2010. 

So, you should get similar step responses as shown above.  

[End of Task] 

Task 25: 2. order system – Special Case 

Special case: When 𝜻 > 0 and the poles are real and distinct we 

have: 

𝐻(𝑠) =
𝐾

(𝑇1𝑠 + 1)(𝑇2𝑠 + 1)
 

 

We see that this system can be considered as two 1. order systems in 

series. 

𝐻(𝑠) = 𝐻1(𝑠)𝐻1(𝑠) =
𝐾

(𝑇1𝑠 + 1)
∙

1

(𝑇2𝑠 + 1)
=

𝐾

(𝑇1𝑠 + 1)(𝑇2𝑠 + 1)
 

Set 𝑇1 = 2 and 𝑇2 = 5 

→ Find the pole(s) 

 

→ Plot the Step response. Set K=1. Set 𝑇1 = 1 𝑎𝑛𝑑 𝑇2 = 0, 𝑇1 = 1 𝑎𝑛𝑑 𝑇2 =

0.05, 𝑇1 = 1 𝑎𝑛𝑑 𝑇2 = 0.1, 𝑇1 = 1 𝑎𝑛𝑑 𝑇2 = 0.25, 𝑇1 = 1 𝑎𝑛𝑑 𝑇2 = 0.5, 𝑇1 =

1 𝑎𝑛𝑑 𝑇2 = 1. Use the step function in MATLAB. 

[End of Task] 

 

 

 



61 

 

8 State-space Models 

It is assumed you are familiar with basic control theory and state-space 

models, if not you may skip this chapter. 

8.1 Introduction 

A state-space model is a structured form or representation of a set of 

differential equations. State-space models are very useful in Control 

theory and design. The differential equations are converted in matrices 

and vectors, which is the basic elements in MATLAB. 

We have the following equations: 

 𝑥̇1 = 𝑎11𝑥1 + 𝑎21𝑥2+ ⋯+ 𝑎𝑛1𝑥𝑛 + 𝑏11𝑢1 + 𝑏21𝑢2 +⋯+ 𝑏𝑛1𝑢𝑛 

⋮ 

𝑥̇𝑛 = 𝑎1𝑚𝑥1 + 𝑎2𝑚𝑥2 +⋯+ 𝑎𝑛𝑚𝑥𝑛 + 𝑏1𝑚𝑢1 + 𝑏2𝑚𝑢2 +⋯+ 𝑏𝑛1𝑢𝑛 

⋮ 

This gives on vector form: 

[

𝑥̇1
𝑥̇2
⋮
𝑥̇𝑛

]

⏟
𝑥̇

= [

𝑎11 ⋯ 𝑎𝑛1
⋮ ⋱ ⋮
𝑎1𝑚 ⋯ 𝑎𝑛𝑚

]
⏟          

𝐴

[

𝑥1
𝑥2
⋮
𝑥𝑛

]

⏟
𝑥

+ [
𝑏11 ⋯ 𝑏𝑛1
⋮ ⋱ ⋮
𝑏1𝑚 ⋯ 𝑏𝑛𝑚

]

⏟          
𝐵

[

𝑢1
𝑢2
⋮
𝑢𝑛

]

⏟
𝑢

 

[

𝑦1
𝑦2
⋮
𝑦𝑛

]

⏟
𝑦

= [

𝑐11 ⋯ 𝑐𝑛1
⋮ ⋱ ⋮
𝑐1𝑚 ⋯ 𝑐𝑛𝑚

]
⏟          

𝐶

[

𝑥1
𝑥2
⋮
𝑥𝑛

]

⏟
𝑥

+ [
𝑑11 ⋯ 𝑑𝑛1
⋮ ⋱ ⋮
𝑑1𝑚 ⋯ 𝑑𝑛𝑚

]

⏟          
𝐷

[

𝑢1
𝑢2
⋮
𝑢𝑛

]

⏟
𝑢

 

 

This gives the following compact form of a general linear State-space 

model: 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 
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𝑦 = 𝐶𝑥 + 𝐷𝑢 

Example: 

Given the following equations: 

𝑥̇1 = −
1

𝐴𝑡
𝑥2 +

1

𝐴𝑡
𝐾𝑝𝑢 

𝑥̇2 = 0 

These equations can be written on the compact state-space form: 

[
𝑥̇1
𝑥̇2
] = [

0 −
1

𝐴𝑡
0 0

]

⏟      
𝐴

[
𝑥1
𝑥2
] + [

𝐾𝑝

𝐴𝑡
0

]

⏟
𝐵

𝑢 

𝑦 = [1 0]⏟  
𝐶

[
𝑥1
𝑥2
] 

[End of Example] 

MATLAB have several functions for creating and manipulation of State-

space models: 

Function Description Example 

ss Constructs a model in state-space form. You also 
can use this function to convert transfer function 

models to state-space form. 

>A = [1 3; 4 6];  
>B = [0; 1];  
>C = [1, 0]; 
>D = 0; 
>sysOutSS = ss(A, B, C, D) 

step Creates a step response plot of the system model. 
You also can use this function to return the step 

response of the model outputs. If the model is in 
state-space form, you also can use this function to 
return the step response of the model states. This 

function assumes the initial model states are zero. 
If you do not specify an output, this function 

creates a plot. 

>num=[1,1]; 

>den=[1,-1,3]; 

>H=tf(num,den); 

>t=[0:0.01:10]; 

>step(H,t); 

lsim Creates the linear simulation plot of a system 
model. This function calculates the output of a 
system model when a set of inputs excite the 

model, using discrete simulation. If you do not 
specify an output, this function creates a plot. 

>t = [0:0.1:10] 

>u = sin(0.1*pi*t)' 

>lsim(SysIn, u, t) 

c2d Convert from continuous- to discrete-time models  

d2c Convert from discrete- to continuous-time models  

 

Example: 

% Creates a state-space model  

A = [1 3; 4 6];  
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B = [0; 1];  

C = [1, 0]; 

D = 0; 

SysOutSS = ss(A, B, C, D)  

 [End of Example] 

Before you start, you should use the Help system in MATLAB to read more 

about these functions. Type “help <functionname>” in the Command 

window. 

8.2 Tasks 

Task 26: State-space model 

Implement the following equations as a state-space model in MATLAB: 

𝑥̇1 = 𝑥2 

2𝑥̇2 = −2𝑥1−6𝑥2+4𝑢1+8𝑢2 

𝑦 = 5𝑥1+6𝑥2+7𝑢1 

→ Find the Step Response 

→ Find the transfer function from the state-space model using MATLAB 

code. 

[End of Task] 

Task 27: Mass-spring-damper system 

Given a mass-spring-damper system: 
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Where c=damping constant, m=mass, k=spring constant, F=u=force 

The state-space model for the system is: 

[
𝑥̇1
𝑥̇2
] = [

0 1

−
𝑘

𝑚
−
𝑐

𝑚

] [
𝑥1
𝑥2
] + [

0
1

𝑚

]𝑢 

𝑦 = [1 0] [
𝑥1
𝑥2
] 

Define the state-space model above using the ss function in MATLAB.  

Set 𝑐 = 1, 𝑚 = 1, 𝑘 = 50 (try also with other values to see what happens). 

→Apply a step in F (u) and use the step function in MATLAB to simulate 

the result. 

→ Find the transfer function from the state-space model 

[End of Task] 

Task 28: Block Diagram 

Find the state-space model from the block diagram below and implement 

it in MATLAB. 

 

 

Set 

𝑎1 = 5 
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𝑎2 = 2 

And b=1, c=1 

→ Simulate the system using the step function in MATLAB 

[End of Task] 

8.3 Discrete State-space Models 

For Simulation and Control in computers discrete systems are very 

important. 

Given the continuous linear state space-model: 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 

𝑦 = 𝐶𝑥 + 𝐷𝑢 

Or given the discrete linear state space-model 

𝑥𝑘+1 = Φ𝑥𝑘 + Γ𝑢𝑘 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 

Or it is also normal to use the same notation for discrete systems: 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 

But the matrices 𝐴, 𝐵, 𝐶, 𝐷 is of course not the same as in the continuous 

system. 

MATLAB has several functions for dealing with discrete systems: 

Function Description Example 

c2d Convert from continuous- to discrete-time models. 

You may specify which Discretization method to 
use 

>>c2d(sys,Ts) 

>>c2d(sys,Ts,‘tustin’) 

d2c Convert from discrete- to continuous- time models >> 

 

Before you start, you should use the Help system in MATLAB to read more 

about these functions. Type “help <functionname>” in the Command 

window. 
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Task 29: Discretization 

The state-space model for the system is: 

[
𝑥̇1
𝑥̇2
] = [

0 1

−
𝑘

𝑚
−
𝑐

𝑚

] [
𝑥1
𝑥2
] + [

0
1

𝑚

]𝑢 

𝑦 = [1 0] [
𝑥1
𝑥2
] 

Set some arbitrary values for 𝑘, 𝑐 and 𝑚.  

Find the discrete State-space model using MATLAB. 

[End of Task] 
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9 Frequency Response 

In this chapter we assume that you are familiar with basic control theory 

and frequency response from previous courses in control theory/process 

control/cybernetics. If not, you may skip this chapter. 

9.1 Introduction 

The frequency response of a system is a frequency dependent function 

which expresses how a sinusoidal signal of a given frequency on the 

system input is transferred through the system. Each frequency 

component is a sinusoidal signal having a certain amplitude and a certain 

frequency. 

The frequency response is an important tool for analysis and design of 

signal filters and for analysis and design of control systems. The frequency 

response can be found experimentally or from a transfer function model. 

We can find the frequency response of a system by exciting the system 

with a sinusoidal signal of amplitude A and frequency ω [rad/s] (Note: 

𝜔 = 2𝜋𝑓) and observing the response in the output variable of the system.  

The frequency response of a system is defined as the steady-state 

response of the system to a sinusoidal input signal. When the system is in 

steady-state it differs from the input signal only in amplitude/gain (A) and 

phase lag (𝜙).  

If we have the input signal: 

𝑢(𝑡) = 𝑈 𝑠𝑖𝑛𝜔𝑡 

The steady-state output signal will be: 

𝑦(𝑡) = 𝑈𝐴⏟
𝑌

 sin (𝜔𝑡 + 𝜙) 

Where 𝐴 =
𝑌

𝑈
 is the ratio between the amplitudes of the output signal and 

the input signal (in steady-state). 
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A and 𝜙 is a function of the frequency ω so we may write 𝐴 = 𝐴(𝜔), 𝜙 = 𝜙(𝜔)  

 

For a transfer function 

𝐻(𝑆) =
𝑦(𝑠)

𝑢(𝑠)
 

We have that: 

𝐻(𝑗𝜔) = |𝐻(𝑗𝜔)|𝑒𝑗∠𝐻(𝑗𝜔)  

Where 𝐻(𝑗𝜔) is the frequency response of the system, i.e., we may find 

the frequency response by setting 𝑠 = 𝑗𝜔 in the transfer function. Bode 

diagrams are useful in frequency response analysis. The Bode diagram 

consists of 2 diagrams, the Bode magnitude diagram, 𝐴(𝜔) and the Bode 

phase diagram, 𝜙(𝜔). 

The Gain function: 

𝐴(𝜔) = |𝐻(𝑗𝜔)|  

The Phase function: 

𝜙(𝜔) = ∠𝐻(𝑗𝜔)  

The 𝐴(𝜔)-axis is in decibel (dB), where the decibel value of x is calculated 

as: 𝒙[𝒅𝑩] = 𝟐𝟎𝒍𝒐𝒈𝟏𝟎𝒙 

The 𝜙(𝜔)-axis is in degrees (not radians!) 

 

MATLAB have several functions for frequency response: 

Function Description Example 

bode Creates the Bode magnitude and Bode phase 
plots of a system model. You also can use this 

function to return the magnitude and phase 
values of a model at frequencies you specify. If 
you do not specify an output, this function creates 

a plot. 

>num=[4]; 

>den=[2, 1]; 

>H = tf(num, den) 

>bode(H) 

bodemag Creates the Bode magnitude plot of a system 
model. If you do not specify an output, this 

function creates a plot. 

>[mag, wout] = bodemag(SysIn) 

>[mag, wout] = bodemag(SysIn, 

[wmin wmax]) 

>[mag, wout] = bodemag(SysIn, 

wlist) 

margin Calculates and/or plots the smallest gain and 
phase margins of a single-input single-output 

(SISO) system model. The gain margin indicates 
where the frequency response crosses at 0 

>num = [1] 

>den = [1, 5, 6] 

>H = tf(num, den) 

margin(H) 
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decibels. The phase margin indicates where the 

frequency response crosses -180 degrees. Use 
the margins function to return all gain and phase 

margins of a SISO model. 

Example: 

Here you will learn to plot the frequency response in a Bode diagram.  

 

We have the following transfer function 

𝐻(𝑠) =
𝑦(𝑠)

𝑢(𝑠)
=

1

𝑠 + 1
 

Below we see the script for creating the frequency response of the 

system in a bode plot using the bode function in MATLAB. Use the grid 

function to apply a grid to the plot.  

% Transfer function H=1/(s+1) 

num=[1]; 

den=[1, 1]; 

H = tf(num, den) 

bode (H); 

The Bode plot: 
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[End of Example] 

 

Before you start, you should use the Help system in MATLAB to read more 

about these functions. Type “help <functionname>” in the Command 

window. 

9.2 Tasks 

Task 30: 1. order system 

We have the following transfer function: 

𝐻(𝑠) =
4

2𝑠 + 1
 

→ What is the break frequency? 
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→ Set up the mathematical expressions for 𝐴(𝜔) and 𝜙(𝜔). Use “Pen & 

Paper” for this Assignment. 

→ Plot the frequency response of the system in a bode plot using the 

bode function in MATLAB. Discuss the results. 

→ Find 𝐴(𝜔) and 𝜙(𝜔) for the following frequencies using MATLAB code 

(use the bode function): 

𝝎 𝑨(𝝎)[𝒅𝑩]  𝝓(𝝎)(𝒅𝒆𝒈𝒓𝒆𝒆𝒔)  

0.1   

0.16   

0.25   

0.4   

0.625   

2.5   

Make sure 𝐴(𝜔) is in dB. 

→ Find 𝐴(𝜔) and 𝜙(𝜔) for the same frequencies above using the 

mathematical expressions for 𝐴(𝜔) and 𝜙(𝜔). Tip: Use a For Loop or 

define a vector w=[0.1, 0.16, 0.25, 0.4, 0.625, 2.5]. 

[End of Task] 

Task 31: Bode Diagram 

We have the following transfer function: 

𝐻(𝑆) =
(5𝑠 + 1)

(2𝑠 + 1)(10𝑠 + 1)
 

→ What is the break frequencies? 

→ Set up the mathematical expressions for 𝐴(𝜔) and 𝜙(𝜔). Use “Pen & 

Paper” for this Assignment. 

→ Plot the frequency response of the system in a bode plot using the 

bode function in MATLAB. Discuss the results. 

→ Find 𝐴(𝜔) and 𝜙(𝜔) for some given frequencies using MATLAB code 

(use the bode function). 

→ Find 𝐴(𝜔) and 𝜙(𝜔) for the same frequencies above using the 

mathematical expressions for 𝐴(𝜔) and 𝜙(𝜔). Tip: use a For Loop or 

define a vector w=[0.01, 0.1, …]. 
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[End of Task] 

9.3 Frequency response Analysis 

Here are some important transfer functions to determine the stability of a 

feedback system. Below we see a typical feedback system. 

 

9.3.1 Loop Transfer Function 

The Loop transfer function 𝑳(𝒔) is defined as follows: 

𝐿(𝑠) = 𝐻𝑐𝐻𝑝𝐻𝑚  

Where 

𝐻𝑐 is the Controller transfer function 

𝐻𝑝 is the Process transfer function 

𝐻𝑚 is the Measurement (sensor) transfer function 

Note! Another notation for 𝐿 is 𝐻0 

9.3.2 Tracking Transfer Function 

The Tracking transfer function 𝑻(𝒔) is defined as follows: 

𝑇(𝑠) =
𝑦(𝑠)

𝑟(𝑠)
=

𝐻𝑐𝐻𝑝𝐻𝑚

1 + 𝐻𝑐𝐻𝑝𝐻𝑚
=

𝐿(𝑠)

1 + 𝐿(𝑠)
= 1 − 𝑆(𝑠)  

The Tracking Property is good if the tracking function T has value equal 

to or close to 1: 

|𝑇| ≈ 1 
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9.3.3 Sensitivity Transfer Function 

The Sensitivity transfer function 𝑺(𝒔) is defined as follows: 

𝑆(𝑠) =
𝑒(𝑠)

𝑟(𝑠)
=

1

1 + 𝐿(𝑠)
= 1 − 𝑇(𝑠)  

The Compensation Property is good if the sensitivity function S has a 

small value close to zero: 

|𝑆| ≈ 0 𝑜𝑟 |𝑆| ≪ 1 

Note! 

𝑇(𝑠) +  𝑆(𝑠) =
𝐿(𝑠)

1 + 𝐿(𝑠)
+

1

1 + 𝐿(𝑠)
≡ 1  

 

Frequency Response Analysis of the Tracking Property: 

From the equations above we find: 

The Tracking Property is good if: 

|𝐿(𝑗𝜔)| ≫ 1 

The Tracking Property is poor if: 

|𝐿(𝑗𝜔)| ≪ 1 

If we plot L, T and S in a Bode plot we get a plot like this: 
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Where the following Bandwidths 𝜔𝑡 , 𝜔𝑐, 𝜔𝑠 are defined: 

𝝎𝒄 – crossover-frequency – the frequency where the gain of the Loop 

transfer function 𝐿(𝑗𝜔) has the value: 

1 = 0𝑑𝐵 

𝝎𝒕 – the frequency where the gain of the Tracking function 𝑇(𝑗𝜔) has the 

value: 

1

√2
≈ 0.71 = −3𝑑𝐵 

𝝎𝒔 - the frequency where the gain of the Sensitivity transfer function 

𝑆(𝑗𝜔) has the value: 

1 −
1

√2
≈ 0.29 = −11𝑑𝐵 

Task 32: Frequency Response Analysis 

Given the following system: 

Process transfer function: 

𝐻𝑝 =
𝐾

𝑠
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Where 𝐾 =
𝐾𝑠

𝜚𝐴
, where 𝐾𝑠 = 0,556, 𝐴 = 13,4, 𝜚 = 145  

Measurement (sensor) transfer function: 

𝐻𝑚 = 𝐾𝑚  

Where 𝐾𝑚  =  1. 

 

Controller transfer function (PI Controller): 

𝐻𝑐 = 𝐾𝑝 +
𝐾𝑝

𝑇𝑖𝑠
 

Set Kp = 1,5 og Ti = 1000 sec. 

→ Define the Loop transfer function 𝑳(𝒔), Sensitivity transfer 

function 𝑺(𝒔) and Tracking transfer function 𝑻(𝒔) and in MATLAB. 

 

→ Plot the Loop transfer function 𝐿(𝑠), the Tracking transfer function 𝑇(𝑠) 

and the Sensitivity transfer function 𝑆(𝑠) in the same Bode diagram. Use, 

e.g., the bodemag function in MATLAB. 

→ Find the bandwidths 𝜔𝑡 , 𝜔𝑐, 𝜔𝑠 from the plot above. 

 

→ Plot the step response for the Tracking transfer function 𝑇(𝑠) 

[End of Task] 

9.4 Stability Analysis of Feedback 

Systems 

Gain Margin (GM) and Phase Margin (PM) are important design criteria for 

analysis of feedback control systems. 

A dynamic system has one of the following stability properties: 

• Asymptotically stable system 

• Marginally stable system 
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• Unstable system 

The Gain Margin – GM (Δ𝐾) is how much the loop gain can increase 

before the system become unstable. 

The Phase Margin - PM (𝜑) is how much the phase lag function of the 

loop can be reduced before the loop becomes unstable. 

 

Where: 

• 𝝎𝟏𝟖𝟎 (gain margin frequency - gmf) is the gain margin 

frequency/frequencies, in radians/second. A gain margin frequency 

indicates where the model phase crosses -180 degrees.   

• GM (Δ𝐾) is the gain margin(s) of the system.  

• 𝝎𝒄 (phase margin frequency - pmf) returns the phase margin 

frequency/frequencies, in radians/second. A phase margin frequency 

indicates where the model magnitude crosses 0 decibels.  

• PM (𝜑) is the phase margin(s) of the system. 

Note! 𝝎𝟏𝟖𝟎  and 𝝎𝒄 are called the crossover-frequencies 

The definitions are as follows: 

Gain Crossover-frequency - 𝝎𝒄 : 

 |𝐿(𝑗𝜔𝑐)| = 1 = 0𝑑𝐵  

Phase Crossover-frequency - 𝝎𝟏𝟖𝟎 : 

 ∠𝐿(𝑗𝜔180) = −180
𝑜  
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Gain Margin - GM (𝚫𝑲): 

𝐺𝑀 =
1

|𝐿(𝑗𝜔180)|
  

or: 

 𝐺𝑀 [𝑑𝐵] = −|𝐿(𝑗𝜔180)| [𝑑𝐵] 

Phase margin PM (𝝋):  

𝑃𝑀 = 180𝑜 +  ∠𝐿(𝑗𝜔𝑐) 

We have that: 

• Asymptotically stable system: 𝝎𝒄 < 𝝎𝟏𝟖𝟎 

• Marginally stable system: 𝝎𝒄 = 𝝎𝟏𝟖𝟎 

• Unstable system: 𝝎𝒄 > 𝝎𝟏𝟖𝟎 

We use the following functions in MATLAB: tf, bode, margins and 

margin. 

Task 33: Stability Analysis 

Given the following system: 

𝐻(𝑆) =
1

𝑠(𝑠 + 1)2
 

We will find the crossover-frequencies for the system using MATLAB. 

We will also find also the gain margins and phase margins for the 

system. 

Plot a bode diagram where the crossover-frequencies, GM and PM are 

illustrated. Tip! Use the margin function in MATLAB. 

[End of Task] 
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10 Additional Tasks 

If you have time left or need more practice, solve the tasks below. Its 

highly recommended to solve these tasks as well, since some of these will 

most likely be part of the final test. 

Task 34: ODE Solvers 

Use the ode45 function to solve and plot the results of the following 

differential equation in the interval [𝑡0, 𝑡𝑓]: 

𝟑𝒘′ +
𝟏

𝟏 + 𝒕𝟐
𝒘 = 𝒄𝒐𝒔𝒕,  𝑡0 = 0, 𝑡𝑓 = 5,𝑤(𝑡0) = 1 

[End of Task] 

Task 35: Mass-spring-damper system 

Given a mass-spring-damper system: 

 

Where c=damping constant, m=mass, k=spring constant, F=u=force 

The state-space model for the system is: 

[
𝑥̇1
𝑥̇2
] = [

0 1

−
𝑘

𝑚
−
𝑐

𝑚

] [
𝑥1
𝑥2
] + [

0
1

𝑚

]𝑢 

Set 𝑐 = 1,𝑚 = 1, 𝑘 = 50. 
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→ Solve and Plot the system using one or more of the built-in solvers 

(use, e.g., ode32) in MATLAB. Apply a step in 𝐹 (which is the control 

signal 𝑢). 

[End of Task] 

Task 36: Numerical Integration 

Given a piston cylinder device:  

 

→ Find the work produced in a piston cylinder device by solving the 

equation: 

𝑊 = ∫ 𝑃𝑑𝑉
𝑉2

𝑉1

 

Assume the ideal gas low applies: 

𝑃𝑉 = 𝑛𝑅𝑇 

where 

• P= pressure 

• V=volume, m3  

• n=number of moles, kmol 

• R=universal gas constant, 8.314 kJ/kmol K 

• T=Temperature, K 

We also assume that the piston contains 1 mol of gas at 300K and that 

the temperature is constant during the process. 𝑉1 = 1𝑚
3, 𝑉2 = 5𝑚

3  
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Use both the quad and quadl functions. Compare with the exact solution 

by solving the integral analytically. 

[End of Task] 

Task 37: State-space model 

The following model of a pendulum is given: 

𝑥̇1 = 𝑥2 

𝑥̇2 = −
𝑔

𝑟
𝑥1 −

𝑏

𝑚𝑟2
𝑥2 

where m is the mass, r is the length of the arm of the pendulum, g is the 

gravity, b is a friction coefficient. 

→ Define the state-space model in MATLAB 

→ Solve the differential equations in MATLAB and plot the results. 

Use the following values 𝑔 = 9.81,𝑚 = 8, 𝑟 = 5, 𝑏 = 10 

[End of Task] 

Task 38: lsim 

Given a mass-spring-damper system: 

 

Where c=damping constant, m=mass, k=spring constant, F=u=force 

The state-space model for the system is: 

[
𝑥̇1
𝑥̇2
] = [

0 1

−
𝑘

𝑚
−
𝑐

𝑚

] [
𝑥1
𝑥2
] + [

0
1

𝑚

]𝑢 
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𝑦 = [1 0] [
𝑥1
𝑥2
] 

→ Simulate the system using the lsim function in the Control System 

Toolbox. 

Set c=1, m=1, k=50. 

[End of Task] 

Task 39: Integration of Numeric Data 

Given the following plot of some given velocity data 

 

First, plot the same plot as shown above using the following data: 

t 0 1 2 3 4 5 6 7 8 9 10 11 12 

v 0 .45 1.7
9 

4.0
2 

7.1
5 

11.1
8 

16.0
9 

21.
9 

29.0
5 

29.0
5 

29.0
5 

29.0
5 

29.0
5 

t 13 14 15 16 17 18 19 20 21 22 23 24  

v 22.4

2 

17.

9 

17.

9 

17.

9 

17.

9 

14.3

4 

11.0

1 

8.9 6.54 2.03 0.55 0  

Where t is time in seconds, while v is the velocity in m/s. 

You could put the data into a text file and import it like this: 

velocitydata = importdata('velocitydata.txt'); 

t = velocitydata(:,1); 

v = velocitydata(:,2); 
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Then calculate the Total Distance Traveled. 

Tip! The Total Distance is the area under the curve (the integral) given 

above. Use e.g., the trapz() function. 

Finally, calculate and plot the Cumulative Distance Traveled. Tip! Use 

the cumtrapz() function. 

 

[End of Task] 
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Appendix A – MATLAB 

Functions 

Numerical Techniques 

Here are some descriptions for the most used MATLAB functions for 

Numerical Techniques. 

Solving Ordinary Differential Equations 

MATLAB offers lots of ode solvers, e.g.: 

Function Description Example 

ode23   

ode45   

Interpolation 

MATLAB offers functions for interpolation, e.g.: 

Function Description Example 

interp1   

   

Curve Fitting 

Here are some of the functions available in MATLAB used for curve fitting: 

Function Description Example 

polyfit P = POLYFIT(X,Y,N) finds the coefficients of a 

polynomial P(X) of degree N that fits the data Y 
best in a least-squares sense. P is a    row vector 

of length N+1 containing the polynomial 
coefficients in descending powers, P(1)*X^N + 
P(2)*X^(N-1) +...+ P(N)*X + P(N+1). 

>>polyfit(x,y,1) 
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polyval Evaluate polynomial. Y = POLYVAL(P,X) returns 

the value of a polynomial P evaluated at X. P is a 
vector of length N+1 whose elements are the 

coefficients of the polynomial in descending 
powers. Y = P(1)*X^N + P(2)*X^(N-1) + ... + 
P(N)*X + P(N+1) 

 

Numerical Differentiation 

MATLAB offers functions for numerical differentiation, e.g.: 

Function Description Example 

diff Difference and approximate derivative. DIFF(X), 

for a vector X, is [X(2)-X(1)  X(3)-X(2) ... X(n)-
X(n-1)]. 

>> dydx_num=diff(y)./diff(x); 

 

polyder Differentiate polynomial. POLYDER(P) returns the 

derivative of the polynomial whose coefficients are 
the elements of vector P. 
POLYDER(A,B) returns the derivative of 

polynomial A*B. 

>>p=[1,2,3]; 

>>polyder(p) 

Numerical Integration 

MATLAB offers functions for numerical integration, such as: 

Function Description Example 

diff Difference and approximate derivative. DIFF(X), 
for a vector X, is [X(2)-X(1)  X(3)-X(2) ... X(n)-

X(n-1)]. 

>> dydx_num=diff(y)./diff(x); 

 

trapz Computes the approximate integral using the 
trapezoidal method 

>> I = trapz(x,y) 

 

quad Numerically evaluate integral, adaptive Simpson 

quadrature. 
Q = QUAD(FUN,A,B) tries to approximate the 

integral of calar-valued function FUN from A to B. 
FUN is a function handle. The function Y=FUN(X) 
should accept a vector argument X and return a 

vector result Y, the integrand evaluated at each 
element of X. Uses adaptive Simpson quadrature 
method 

>> 

 

quadl Same as quad, but uses adaptive Lobatto 
quadrature method 

>> 

polyint Integrate polynomial analytically.  POLYINT(P,K) 

returns a polynomial representing the integral of 
polynomial P, using a scalar constant of 
integration K. 

>> I = polyint(p) 

integral Numerically integrates function fun from xmin to 

xmax 

>> I = integral(fun,xmin,xmax) 

Optimization 

MATLAB offers functions for local minimum, such as: 
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Function Description Example 

fminbnd X = FMINBND(FUN,x1,x2) attempts to find a 

local minimizer X of the function FUN in the 
interval x1 < X < x2. FUN is a function handle.  
FUN accepts scalar input X and returns a scalar 

function value F evaluated at X. FUN can be 
specified using @. 
FMINBND is a single-variable bounded 

nonlinear function minimization. 

>> x = fminbnd(@cos,3,4) 

x = 

    3.1416 

 

fminsearch X = FMINSEARCH(FUN,X0) starts at X0 and 
attempts to find a local minimizer X of the 

function FUN. FUN is a function handle.  FUN 
accepts input X and returns a scalar function 

value F evaluated at X. X0 can be a scalar, 
vector or matrix. FUN can be specified using 
@. 

FMINSEARCH is a multidimensional 
unconstrained nonlinear function minimization. 

>> x = fminsearch(@sin,3) 

x = 

    4.7124 

 

 

Control and Simulation 

Here are some descriptions for the most used MATLAB functions for 

Control and Simulation. 

Function Description Example 

plot Generates a plot. plot(y) plots the columns of y 

against the indexes of the columns. 

>X = [0:0.01:1]; 

>Y = X.*X; 

>plot(X, Y) 

tf Creates system model in transfer function form. 

You also can use this function to state-space 
models to transfer function form. 

>num=[1]; 

>den=[1, 1, 1]; 

>H = tf(num, den) 

pole Returns the locations of the closed-loop poles of a 
system model. 

>num=[1] 

>den=[1,1] 

>H=tf(num,den) 

>poles(H) 

step Creates a step response plot of the system 
model. You also can use this function to return 

the step response of the model outputs. If the 
model is in state-space form, you also can use 
this function to return the step response of the 

model states. This function assumes the initial 
model states are zero. If you do not specify an 

output, this function creates a plot. 

>num=[1,1]; 

>den=[1,-1,3]; 

>H=tf(num,den); 

>t=[0:0.01:10]; 

>step(H,t); 

lsim Creates the linear simulation plot of a system 
model. This function calculates the output of a 

system model when a set of inputs excite the 
model, using discrete simulation. If you do not 
specify an output, this function creates a plot. 

>t = [0:0.1:10] 

>u = sin(0.1*pi*t)' 

>lsim(SysIn, u, t) 

conv Computes the convolution of two vectors or 

matrices. 

>C1 = [1, 2, 3]; 

>C2 = [3, 4]; 

>C = conv(C1, C2) 

series Connects two system models in series to produce 

a model SysSer with input and output 
connections you specify 

>Hseries = series(H1,H2) 

feedback Connects two system models together to produce 

a closed-loop model using negative or positive 
feedback connections 

>SysClosed = feedback(SysIn_1, 

SysIn_2) 
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ss Constructs a model in state-space form. You also 

can use this function to convert transfer function 
models to state-space form. 

>A = eye(2) 

>B = [0; 1] 

>C = B' 

>SysOutSS = ss(A, B, C) 

bode Creates the Bode magnitude and Bode phase 

plots of a system model. You also can use this 
function to return the magnitude and phase 
values of a model at frequencies you specify. If 

you do not specify an output, this function 
creates a plot. 

>num=[4]; 

>den=[2, 1]; 

>H = tf(num, den) 

>bode(H) 

bodemag Creates the Bode magnitude plot of a system 

model. If you do not specify an output, this 
function creates a plot. 

>[mag, wout] = bodemag(SysIn) 

>[mag, wout] = bodemag(SysIn, 

[wmin wmax]) 

>[mag, wout] = bodemag(SysIn, 

wlist) 

margin Calculates and/or plots the smallest gain and 

phase margins of a single-input single-output 
(SISO) system model. The gain margin indicates 
where the frequency response crosses at 0 

decibels. The phase margin indicates where the 
frequency response crosses -180 degrees. Use 

the margins function to return all gain and phase 
margins of a SISO model. 

>num = [1] 

>den = [1, 5, 6] 

>H = tf(num, den) 

margin(H) 

margins Calculates all gain and phase margins of a single-

input single-output (SISO) system model. The 
gain margins indicate where the frequency 
response crosses at 0 decibels. The phase 

margins indicate where the frequency response 
crosses -180 degrees. Use the margin function to 
return only the smallest gain and phase margins 

of a SISO model. 

>[gmf, gm, pmf, pm] = margins(H) 

c2d Convert from continuous- to discrete-time models  

d2c Convert from discrete- to continuous-time models  
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